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Abstract
Using a contraction procedure developed earlier, we construct, in the first part
of the present paper, the Jordanian quantum Hopf algebra Uh(sl(3)) which has
a remarkably simple coalgebraic structure and contains the Jordanian algebra
Uh(sl(2)), obtained by Ohn, as a Hopf subalgebra. A nonlinear map between
the quantum Uh(sl(3)) and the classical U(sl(3)) algebras is then established;
and the universal Rh-matrix of the Uh(sl(3)) algebra is given. In the second
part, we give the higher dimensional Jordanian algebras Uh(sl(N)) for all N.
The universal Rh-matrix of the Uh(sl(N)) algebra is also given.

PACS numbers: 02.10.Hh, 02.20.−a, 03.65.Fd

1. Introduction

It is well known that the enveloping algebra U(sl(N)) of the Lie algebra sl(N) has two
quantizations: the first one called the Drinfeld–Jimbo deformation or the standard quantum
deformation [1, 2] is quasitriangular, whereas the second one called the Jordanian deformation
or the non-standard quantum deformation [3] is triangular (R21R = I). A typical example of
Jordanian quantum algebras was first introduced by Ohn [4]. In general, non-standard quantum
algebras are obtained by applying Drinfeld twist [5] to the corresponding Lie algebras. A
twisting that produces an algebra isomorphic to the Ohn algebra [4] is found in [6, 7].
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Recently, the twisting procedure was extensively employed to study a wide variety of
Jordanian deformed algebras, such asUh(sl(N)) algebra [8–12], symplectic algebraUh(sp(N))

[13], orthogonal algebra Uh(so(N)) [14–17] and orthosymplectic superalgebra Uh(osp(1|2))
[18, 19]. It follows from these studies that:

1. the non-standard quantum algebras have undeformed commutation relations;
2. the Jordanian deformation appears only in the coalgebraic structure;
3. the coproduct and the antipode maps have very complicated forms in comparison

with the Drinfeld–Jimbo and the Ohn deformations.

So far Jordanian quantum algebra Uh(sl(N)) has been explicitly written, with a simple
coalgebra but with deformed commutation relations, only for N = 2 [4]. This amounts
to a choice of an appropriate basis, in which the commutation relations are deformed but
the corresponding coalgebraic structure remains simple. Following this approach we here
construct the Jordanian quantum algebra Uh(sl(3)), wherein we use the contraction procedure
developed in [20, 21] and an analogue of the map introduced before [21, 22]. The Uh(sl(3))
algebra presented here has the following properties:

1. the Ohn algebra Uh(sl(2)) is included in our Uh(sl(3)) algebraic structure in a natural way
as a Hopf subalgebra and arises here from the generators associated with the highest root;

2. our Jordanian deformed Uh(sl(3)) algebra may be regarded as the dual Hopf algebra of
the function algebra Funh(SL(3)) studied in [23];

3. with our choice of the basis the presentUh(sl(3))Hopf algebra has deformed commutation
relations; but is endowed with a relatively simpler coalgebraic structure compared to those
in the previous studies [8–11]. Contrasting these previous papers, this simplicity of the
present coalgebraic structure is a distinguishing feature of our study. Pertinent to the full
Hopf structure of the Uh(sl(3)) algebra, we obtain its universal Rh-matrix comprising the
generators associated with the highest root.

Implementing our contraction technique we subsequently obtain higher dimensional
Jordanian quantum algebras Uh(sl(N)) for arbitrary values of N. Here also our commutation
relations are deformed, and our coalgebraic structures are considerably simpler than those
found elsewhere [8–11]. Generalizing our result on the Uh(sl(3)) algebra, we obtain the
universal Rh-matrix of the Uh(sl(N)) algebra.

The manuscript is organized as follows: the Jordanian quantum algebra Uh(sl(3)) is
introduced via a nonlinear map and proved to be a Hopf algebra endowed with a triangular
universal Rh-matrix in section 2. The irreducible representations (irreps.) of the Uh(sl(3))
algebra are also given. Higher dimensional algebras Uh(sl(N)), N � 4, are presented in
sections 3 and 4. We conclude in section 5.

2. Uh(sl(3)): map, Hopf algebra, irreps and Rh-matrix

For our purpose, the deformation parameter h is an arbitrary complex number. It was proved in
[21] that the Rh-matrix of the Jordanian quantum algebra Uh(sl(3)) can be obtained from the
Rq-matrix associated with the Drinfeld–Jimbo quantum algebra Uq(sl(3)) through a specific
contraction which is singular in the q → 1 limit. For the transformed matrix, the singularities,
however, cancel yielding a well-defined construction. For the sake of completeness here we
briefly describe the well-known [24] Hopf structure of the Uq(sl(3)) algebra.

Choosing the Chevalley generators corresponding to the simple roots of the Uq(sl(3))
algebra as (êi , f̂ i(=ê−i ), hi | i = (1, 2)), we define ê3 = ê1ê2 − q−1ê2ê1, f̂ 3 = f̂ 2f̂ 1 −
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qf̂ 1f̂ 2, h3 = h1 + h2. The Hopf structure of the Uq(sl(3)) algebra is given by

[hi, hj ] = 0 [hi, ê±j ] = ±aij ê±j [êi , ê−j ] = δij [hi]

ê1ê3 = qê3ê1 ê2ê3 = q−1ê3ê2 f̂ 1f̂ 3 = qf̂ 3f̂ 1 f̂ 2f̂ 3 = q−1f̂ 3f̂ 2
(1)

�q(hi) = hi ⊗ 1 + 1 ⊗ hi �q(ê±i ) = ê±i ⊗ qhi/2 + q−hi/2 ⊗ ê±i

εq(hi) = εq(ê±i ) = 0 Sq(hi) = −hi Sq(ê±i )) = −q±1ê±i

where [X ] = qX −q−X

q−q−1 . The Cartan matrix for the sl(3) algebra reads a =
(

2 −1
−1 2

)
. The

universal Rq-matrix of the Uq(sl(3)) algebra is given by

Rq = q
∑

i,j (a
−1)ij hi⊗hj expq−2

(
λê2q

h2/2 ⊗ q−h2/2f̂ 2

)
expq−2

(
λê3q

h3/2 ⊗ q−h3/2f̂ 3

)
× expq−2

(
λê1q

h1/2 ⊗ q−h1/2f̂ 1
)

(2)

where λ = q − q−1, expq(X ) = ∑∞
n=0 X n/{n}q!, {n}q! = {n}q{n − 1}q!, {0}q!,= 1 and

{n}q = (1 − qn)/(1 − q). We subsequently denote the classical (q = 1) generators of the
sl(3) algebra by h1, h2, h3 = h1 + h2, e1, e2, e3 = e1e2 − e2e1, f1, f2 and f3 = f2f1 − f1f2.

Although the present contraction method is generic in character and may be used to
extract the Jordanian Rh-matrix for arbitrary representations in the two tensor product sectors,
we, for brevity and simplicity, limit ourselves to (fundamental irrep) ⊗ (arbitrary irrep). The
Rq-matrix of the Uq(sl(3)) algebra in the representation (fund.) ⊗ (arb.) reads

Rq = (
π(fund.) ⊗ π(arb.)

)Rq

=


q

1
3 (2h1+h2) q

1
3 (2h1+h2)�12 q

1
3 (2h1+h2)�13

0 q− 1
3 (h1−h2) q− 1

3 (h1−h2)�23

0 0 q− 1
3 (h1+2h2)


 (3)

where

�12 = q−1/2λq−h1/2f̂ 1 �13 = q−1/2λq−h3/2f̂ 3 �23 = q−1/2λq−h2/2f̂ 2. (4)

We have shown in [21] that the non-standard Rh-matrix in the (fund.) ⊗ (arb.)
representation arises from the correspondingRq -matrix as follows:

Rh = lim
q→1

[
Eq

(
hê3

q − 1

)
(fund.)

⊗ Eq

(
hê3

q − 1

)
(arb.)

]−1

×Rq

[
Eq

(
hê3

q − 1

)
(fund.)

⊗ Eq

(
hê3

q − 1

)
(arb.)

]

= lim
q→1



E−1
q

(
hê3
q−1

)
0 − h

q−1E
−1
q

(
hê3
q−1

)
0 E−1

q

(
hê3
q−1

)
0

0 0 E−1
q

(
hê3
q−1

)

 (5)

×Rq



Eq

(
hê3
q−1

)
0 h

q−1Eq

(
hê3
q−1

)
0 Eq

(
hê3
q−1

)
0

0 0 Eq

(
hê3
q−1

)



=

T 2hT −1/2e2 − h

2 (T + T −1)(h1 + h2) + h
2 (T − T −1)

0 I −2hT 1/2e1

0 0 T −1
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where

T = he3 +
√

1 + h2e2
3 T −1 = −he3 +

√
1 + h2e2

3. (6)

The deformed exponential in (5) is defined by

Eq(X ) =
∞∑
n=0

X n

[n]!
where [n]! = [n] × [n − 1]! [0]! = 1. (7)

The following properties can be pointed out:
1. The corner elements of (5) have exactly the same structure as in the Rh-matrix of the

Uh(sl(2)) algebra. This indicates that the classical generators e3, h3 = h1 + h2 and f3 of the
U(sl(3)) algebra are deformed (for the non-standard quantization: U(sl(3)) → Uh(sl(3))) as
follows [21, 22]:

T = he3 +
√

1 + h2e2
3 T −1 = −he3 +

√
1 + h2e2

3
(8)

H3 =
√

1 + h2e2
3h3 F3 = f3 − h2

4
e3

(
h2

3 − 1
)

and the deformed generators evidently satisfy the commutation relations [4]

T T −1 = T −1T = 1 [H3, T ] = T 2 − 1 [H3, T
−1] = T −2 − 1

[T , F3] = h

2
(H3T + TH3)

[
T −1, F3

] = −h

2

(
H3T

−1 + T −1H3
)

(9)

[H3, F3] = − 1
2

(
T F3 + F3T + T −1F3 + F3T

−1) .
On defining

E3 = h−1 ln T = h−1 arcsinh he3 (10)

it follows that the elements (H3, E3, F3) satisfy the relations of the Uh(sl(2)) algebra [4]

[H3, E3] = 2
sinh hE3

h
[H3, F3] = −F3 (cosh hE3) − (cosh hE3) F3 (11)

[E3, F3] = H3

where it is obvious that as h → 0, we have (H3, E3, F3) → (h3, e3, f3). The algebraic
property (11) makes the embedding Uh(sl(2)) ⊂ Uh(sl(3)) evident.

2. Expression (5) of the Rh-matrix indicates that the simple root generators e1 and e2 are
deformed as follows:

E1 =
√

he3 +
√

1 + h2e2
3e1 = T 1/2e1 E2 =

√
he3 +

√
1 + h2e2

3e2 = T 1/2e2. (12)

To complete our Uh(sl(3)) algebra, we introduce the following h-deformed generators:

F1 =
√

−he3 +
√

1 + h2e2
3f1 +

h

2

√
he3 +

√
1 + h2e2

3e2h3 = T −1/2

(
f1 +

h

2
e2T h3

)

F2 =
√

−he3 +
√

1 + h2e2
3f2 − h

2

√
he3 +

√
1 + h2e2

3e1h3 = T −1/2

(
f2 − h

2
e1T h3

)
(13)

H1 =
(

−he3 +
√

1 + h2e2
3

) (√
1 + h2e2

3h1 +
h

2
e3(h1 − h2)

)
= h1 − h

2
e3T

−1h3

H2 =
(

−he3 +
√

1 + h2e2
3

) (√
1 + h2e2

3h2 − h

2
e3(h1 − h2)

)
= h2 − h

2
e3T

−1h3.
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Expressions (8), (12) and (13) constitute a realization of the Jordanian algebra Uh(sl(3))
with the classical generators via a nonlinear map. This immediately yields the irreducible
representations (irreps.) of Uh(sl(3)) in an explicit and simple manner.

Proposition 1. The Jordanian algebra Uh(sl(3)) is an associative algebra over C generated
by H1,H2,H3, E1, E2, T , T

−1, F1, F2 and F3, satisfying, along with (9), the commutation
relations

[H1,H2] = 0
[
H1, T

−1H3
] = [

H2, T
−1H3

] = 0 [H1, E1] = 2E1

[H2, E2] = 2E2 [H1, E2] = −E2 [H2, E1] = −E1[
T −1H3, E1

] = E1
[
T −1H3, E2

] = E2 [H1, F1] = −2F1 + hE2T
−1H3

[H2, F2] = −2F2 − hE1T
−1H3 [H1, F2] = F2 − hE1T

−1H3

[H2, F1] = F1 + hE2T
−1H3 [TH3, F1] = −T 2F1 [TH3, F2] = −T 2F2[

T −1E1, F1
] = 1

2 (T + T −1)H1 + 1
2 (T − T −1)H2[

T −1E2, F2
] = 1

2 (T + T −1)H2 + 1
2 (T − T −1)H1[

T −1E1, F2
] = 0

[
T −1E2, F1

] = 0 [E1, E2] = 1

2h
(T 2 − 1)

(14)

[T F2, T F1] = T

(
F3 − h

2
H3TH3 − h

8
(T − T −1)

)
[TH1, T ] = 1

2 (T
2 − 1)[

TH1, T
−1] = 1

2 (T
−2 − 1) [TH2, T ] = 1

2 (T
2 − 1)

[
TH2, T

−1] = 1
2 (T

−2 − 1)

[H1, F3] = −T −1

4

(
T F3 + F3T + T −1F3 + F3T

−1
) − h

4
T −1H 2

3 − h

4
H3T

−1H3

[H2, F3] = −T −1

4

(
T F3 + F3T + T −1F3 + F3T

−1) − h

4
T −1H 2

3 − h

4
H3T

−1H3

[E1, T ] = [
E1, T

−1
] = [E2, T ] = [E2, T

−1] = 0 [F1, T ] = hTE2[
F1, T

−1] = −hT −1E2 [F2, T ] = −hTE1
[
F2, T

−1] = hT −1E1

[E1, F3] = − 1
2 (T F2 + F2T ) [E2, F3] = 1

2 (T F1 + F1T )

[F1, F3] = hT F1 − hE2F3 +
h2

4
T E2 [F2, F3] = hT F2 + hE1F3 − h2

4
TE1.

Here we have quoted only the final results. To obtain the realizations of H1 and H2 given

in (13), we, in analogy with (8), started with the ansatz
√

1 + h2e2
3h1 and

√
1 + h2e2

3h2 for these
generators, respectively. It is easy to see that

[√
1 + h2e2

3h1, F3

]
= −1

4

(
T F3 + F3T + T −1F3 + F3T

−1)
+

h2

4
(e3(h1 − h2)H3 + H3e3(h1 − h2))

(15)[√
1 + h2e2

3h2, F3

]
= −1

4

(
T F3 + F3T + T −1F3 + F3T

−1)
− h2

4
(e3(h1 − h2)H3 + H3e3(h1 − h2)).
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Then, if we add to
√

1 + h2e2
3h1 and deduct from

√
1 + h2e2

3h2 the term h
2e3(h1 −h2), we obtain[(√

1 + h2e2
3h1 +

h

2
e3(h1 − h2)

)
, F3

]
= −1

4

(
T F3 + F3T + T −1F3 + F3T

−1
)

+
h

4
T (h1 − h2)H3 +

h

4
H3T (h1 − h2)

(16)[(√
1 + h2e2

3h2 − h

2
e3(h1 − h2)

)
, F3

]
= −1

4

(
T F3 + F3T + T −1F3 + F3T

−1)
− h

4
T (h1 − h2)H3 − h

4
H3T (h1 − h2).

These commutation relations suggest the realizations H1 ∼ (√
1 + h2e2

3h1 + h
2e3(h1 −h2)

)
and

H2 ∼ (√
1 + h2e2

3h2− h
2e3(h1−h2)

)
. Finally, to preserve the Cartan subalgebra, we are obliged

to multiply both of these expressions by T −1. The resultant maps for H1 and H2 are quoted
in (13). The expressions of F1 and F2 are obtained in a similar way. Expressions (8), (12)
and (13) may be looked at now as a particular realization of the Uh(sl(3)) generators. Other
invertible maps relating the Jordanian and the classical generators may also be considered.

Proposition 2. In terms of the Chevalley generators {E1, E2, F1, F2,H1,H2}, the Jordanian
algebra Uh(sl(3)) is defined as follows:

T = (1 + 2h[E1, E2])1/2 T −1 = (1 + 2h[E1, E2])−1/2 [H1,H2] = 0

[H1, E1] = 2E1 [H2, E2] = 2E2 [H1, E2] = −E2 [H2, E1] = −E1

[H1, F1] = −2F1 + hE2(H1 + H2) [H2, F2] = −2F2 − hE1(H1 + H2)

[H1, F2] = F2 − hE1(H1 + H2) [H2, F1] = F1 + hE2(H1 + H2)[
T −1E1, F1

] = 1
2 (T + T −1)H1 + 1

2 (T − T −1)H2 (17)[
T −1E2, F2

] = 1
2 (T + T −1)H2 + 1

2 (T − T −1)H1
[
T −1E1, F2

] = [
T −1E2, F1

] = 0

E2
1E2 − 2E1E2E1 + E2E

2
1 = 0 E2

2E1 − 2E2E1E2 + E1E
2
2 = 0

(T F1)
2T F2 − 2T F1T F2T F1 + T F2(T F1)

2 = 0

(T F2)
2T F1 − 2T F2T F1T F2 + T F1(T F2)

2 = 0

or, briefly

[Hi,Hj ] = 0 [Hi,Ej ] = aijEj

[Hi, Fj ] = −aijFj + T −1[Fj , T ](H1 + H2)[
T −1Ei, Fj

] = δij
(
T −1Hi + 1

2 (T − T −1)(H1 + H2)
)

(18)

(adEi)
1−aij (Ej ) = 0 i = j

(adT Fi)
1−aij (T Fj ) = 0 i = j

where (aij )i,j=1,2 is the Cartan matrix of sl(3).

3. We now turn to the coalgebraic structure:

Proposition 3. The Jordanian quantum algebra Uh(sl(3)) admits a Hopf structure with
coproduct, antipode and counit maps determined by

�(E1) = E1 ⊗ 1 + T ⊗ E1 �(E2) = E2 ⊗ 1 + T ⊗ E2

�(T ) = T ⊗ T �(T −1) = T −1 ⊗ T −1
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�(F1) = F1 ⊗ 1 + T −1 ⊗ F1 + hH3 ⊗ E2

= F1 ⊗ 1 + T −1 ⊗ F1 + T (H1 + H2)⊗ T −1[F1, T ]

�(F2) = F2 ⊗ 1 + T −1 ⊗ F2 − hH3 ⊗E1

= F2 ⊗ 1 + T −1 ⊗ F2 + T (H1 + H2)⊗ T −1[F2, T ]

�(F3) = F3 ⊗ T + T −1 ⊗ F3

�(H1) = H1 ⊗ 1 + 1 ⊗ H1 − 1
2 (1 − T −2)⊗ T −1H3

= H1 ⊗ 1 + 1 ⊗ H1 − 1
2 (1 − T −2)⊗ (H1 + H2)

�(H2) = H2 ⊗ 1 + 1 ⊗ H2 − 1
2 (1 − T −2)⊗ T −1H3

= H2 ⊗ 1 + 1 ⊗ H2 − 1
2 (1 − T −2)⊗ (H1 + H2) (19)

�(H3) = H3 ⊗ T + T −1 ⊗ H3 S(E1) = −T −1E1

S(E2) = −T −1E2 S(T ) = T −1 S(T −1) = T

S(F1) = −T F1 + hTH3T
−1E2 = −T F1 + T 2(H1 + H2)T

−2[F1, T ]

S(F2) = −T F2 − hTH3T
−1E1 = −T F2 + T 2(H1 + H2)T

−2[F2, T ]

S(F3) = −T F3T
−1

S(H1) = −H1 − 1
2 (T − T −1)H3 = −H1 − 1

2 (T
2 − 1)(H1 + H2)

S(H2) = −H2 − 1
2 (T − T −1)H3 = −H2 − 1

2 (T
2 − 1)(H1 + H2)

S(H3) = −TH3T
−1

ε(a) = 0 ∀a ∈ {H1,H2,H3, E1, E2, F1, F2, F3}
ε(T ) = ε(T −1) = 1.

All the Hopf algebra axioms can be verified by direct calculations. We remark that our
coproducts have simpler forms compared to those maps in [8–11]. This is one main benefit of
our procedure. Pertinent to the algebraic and the coalgebraic structures of our Uh(sl(3)) Hopf
algebra described in (9), (14) and (19), here we obtain its universal Rh-matrix in the following
form:

Rh = exp(−hE3 ⊗ TH3) exp(hTH3 ⊗E3). (20)

The above universal Rh-matrix satisfies the required properties [24] for the full Uh(sl(3))
Hopf structure discussed earlier. We note that the element (20), generated by E3 and
H3, coincides with the universal Rh-matrix of the Uh(sl(2)) subalgebra [25] involving the
generators corresponding to the highest root, and may be connected to the results obtained by
the contraction process (e.g. (5)) by a suitable twist operator that can be derived as a series
expansion in h.

4. Following Drinfeld’s arguments [5], it is possible to construct a twist operator
G ∈ U(sl(3))⊗2[[h]] relating the Jordanian coalgebraic structure given by (19) with the
corresponding classical coalgebraic structure. For an invertible map m : Uh(sl(3)) →
U(sl(3)),m−1 : U(sl(3)) → Uh(sl(3)), the following relations hold:

(m ⊗ m) ◦ � ◦ m−1(X ) = G�0(X )G−1 m ◦ S ◦ m−1(X ) = gS0(X )g−1 (21)

where X ∈ U(sl(3))[[h]] and (�0, ε0, S0) are the coproduct, counit and the antipode maps of
the classical U(sl(3)) algebra. The transforming operator g(∈ U(sl(3))[[h]]) and its inverse
may be expressed as

g = µ ◦ (id ⊗ S0)G g−1 = µ ◦ (S0 ⊗ id)G−1 (22)

where µ is the multiplication map.
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For the map presented in (8), (12) and (13), we have the construction

GI = 1 ⊗ 1 − 1
2 hr + 1

8 h2 [
r2 + 2(e3 ⊗ e3)�0(h3)

] − 1
48 h3 [

r3 + 6(e3 ⊗ e3)�0(h3)r

− 4(�0(e3))
2r

]
+ 1

384 h4 [
r4 − 16(�0(e3))

2r2 + 12(e3 ⊗ e3)�0(h3)r
2

+ 12((e3 ⊗ e3)�0(h3))
2 + 6

(
e3

2 ⊗ 1 − 1 ⊗ e3
2
)2
�0(h3)

+ 12(�0(e3))
2 (
e3

2 ⊗ 1 + 1 ⊗ e3
2
)
�0(h3)

− 8�0(e3)
(
e3

3 ⊗ 1 + 1 ⊗ e3
3
)
�0(h3)− 10(�0(e3))

4�0(h3)
]

+ O(h5)

gI = 1 + he3
(
1 + h2e3

2)1/2
+ h2e3

2 (23)

where the classical r-matrix reads r = h3 ⊗ e3 − e3 ⊗ h3. The above twist operators, while
obeying the requirement (21) for the full U(sl(3))[[h]] algebra, are, however, generated only
by the elements (e3, h3), related to the highest root. This property accounts for the embedding
of the Uh(sl(2)) algebra in the higher dimensional Uh(sl(3)) algebra. The transforming
operator gI is obtained in (23) in a closed form. The series expansion of the twist operatorGI ,
corresponding to the map given in (8), (12) and (13), may be developed up to an arbitrary order
in h. Expansion (23) of the twist operator GI in powers of h satisfies the cocycle condition

(1 ⊗GI )(id ⊗�0)GI = (GI ⊗ 1)(�0 ⊗ id)GI (24)

up to the desired order. Using the map given in (8), (12) and (13), the universal Rh-matrix
(20) may be recast in the form

Rh = (σ ◦ GI)G
−1
I (25)

which is valid up to an arbitrary order in expansion (23). The operator σ permutes in the
tensor product space. The present discussion of the twist operator relating to the Uh(sl(3))
algebra may be easily extended to higher dimensional Jordanian algebras. A systematic study
of invertible maps between the classical U(sl(2)) and the quantum Uh(sl(2)) algebras, and the
twist operators corresponding to these maps, can be found in [22]. We would like to point out
here that the undeformed classical U(sl(3)) algebra and the Jordanian Uh(sl(3)) algebra may
be related by a class of maps, of which the map constructed here in (8), (12) and (13) is an
example. Different maps correspond to different twist operators relating the cocommutative
and the non-cocommutative coproducts of U(sl(3)) and Uh(sl(3)) algebras, respectively. In
particular, the factorized form (20) of the Rh-matrix immediately suggests the following twist
operator GII = exp(−hTH3 ⊗ E3) in closed form. The corresponding map interrelating the
classical U(sl(3)) and the quantized Uh(sl(3)) algebras will be discussed elsewhere.

5. Let us mention that there is a C-algebra automorphismφ of Uh(sl(3)) algebra such that

φ(T ±1) = T ±1 φ(F3) = F3 φ(H3) = H3

φ(E1) = E2 φ(F1) = F2 φ(H1) = H2

φ(E2) = −E1 φ(F2) = −F1 φ(H2) = H1.

(26)

(For h = 0, this automorphism reduces to the classical one (h1, e1, f1, h2, e2, f2) →
(h2, e2, f2, h1,−e1,−f1)). Also there is a second C-algebra automorphismϕ of the Uh(sl(3))
algebra defined as

ϕ(T ±1) = −T ±1 ϕ(F3) = −F3 ϕ(H3) = −H3

ϕ(E1) = E1 ϕ(F1) = F1 ϕ(H1) = H1

ϕ(E2) = E2 ϕ(F2) = F2 ϕ(H2) = H2.

(27)

6. Expressions (8), (12) and (13) permit immediate explicit construction of the
finite-dimensional irreducible representations of the Uh(sl(3)) algebra. For example, the
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three-dimensional irreducible representations are spanned by

H1 =

1 0 h

2
0 −1 0
0 0 0


 E1 =


0 1 0

0 0 0
0 0 0


 F1 =


0 0 0

1 0 − h
2

0 0 0




H2 =

0 0 h

2
0 1 0
0 0 −1


 E2 =


0 0 0

0 0 1
0 0 0


 F2 =


0 − h

2 0
0 0 0
0 1 0


 (28)

H3 =

1 0 0

0 0 0
0 0 −1


 T ±1 =


1 0 ±h

0 1 0
0 0 1


 F3 =


0 0 0

0 0 0
1 0 0




or, by

H1 =

1 0 h

2
0 −1 0
0 0 0


 E1 =


0 1 0

0 0 0
0 0 0


 F1 =


0 0 0

1 0 − h
2

0 0 0




H2 =

0 0 h

2
0 1 0
0 0 −1


 E2 =


0 0 0

0 0 1
0 0 0


 F2 =


0 − h

2 0
0 0 0
0 1 0


 (29)

H3 =

−1 0 0

0 0 0
0 0 1


 T ±1 =


−1 0 ∓h

0 −1 0
0 0 −1


 F3 =


 0 0 0

0 0 0
−1 0 0


 .

The three-irrep (29) is directly obtained from the irrep (28) using the automorphism ϕ.

3. Uh(sl(4)): map and Rh-matrix

The major interest of our approach is that it can be generalized for obtaining Jordanian quantum
algebras Uh(sl(N)) of higher dimensions. Here we illustrate our method using the U(sl(4))
algebra as an example. Let h1 = e11 − e22 ≡ h12, h2 = e22 − e33 ≡ h23, h3 = e33 − e44 ≡ h34,
e1 ≡ e12, e2 ≡ e23, e3 ≡ e34, f1 ≡ e21, f2 ≡ e32 and f3 ≡ e43 be the standard Chevalley
generators of U(sl(4)). The generators corresponding to other roots, obtained by the action
of the Weyl group, are denoted by e13 = [e12, e23], e14 = [e13, e34], e24 = [e23, e34],
e31 = [e32, e21], e41 = [e43, e31], e42 = [e43, e32], h13 = h12 + h23, h14 = h12 + h23 + h34 and
h24 = h23 + h34. As in the Uh(sl(3)) algebra, the Jordanian deformation arises here from the
generators corresponding to the highest root, i.e. from e14, e41 and h14. These generators are
deformed as follows:

T = he14 +
√

1 + h2e2
14 T −1 = −he14 +

√
1 + h2e2

14
(30)

E41 = e41 − h2

4
e14

(
h2

14 − 1
)

H14 =
√

1 + h2e2
14h14

with the well-known coproducts

�(T ) = T ⊗ T �(T −1) = T −1 ⊗ T −1

�(E41) = E41 ⊗ T + T −1 ⊗E41 (31)

�(H14) = H14 ⊗ T + T −1 ⊗ H14.

Paralleling the pattern in the Uh(sl(3)) algebra, both the subsets {h12, e12, e21,

e24, e42, h24 = h23 + h34, e14, e41, h14 = h12 + h23 + h34} and {h13 = h12 + h23, e13, e31,
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e34, e43, h34, e14, e41, h14 = h12 + h23 + h34}6 are deformed exactly as presented in (12) and
(13), i.e.

E12 =
√

he14 +
√

1 + h2e2
14e12 = T 1/2e12 E24 =

√
he14 +

√
1 + h2e2

14e24 = T 1/2e24

E21 =
√

−he14 +
√

1 + h2e2
14e21 +

h

2

√
he14 +

√
1 + h2e2

14e24h14 = T −1/2

(
e21 +

h

2
T e24h14

)

E42 =
√

−he14 +
√

1 + h2e2
14e42 − h

2

√
he14 +

√
1 + h2e2

14e12h14 = T −1/2

(
e42 − h

2
T e12h14

)

H12 =
(

−he14 +
√

1 + h2e2
14

) (√
1 + h2e2

14h12 +
h

2
e14(h12 − h24)

)
= h12 − h

2
e14T

−1h14

H24 =
(

−he14 +
√

1 + h2e2
14

) (√
1 + h2e2

14h24 − h

2
e14(h12 − h24)

)
= h24 − h

2
e14T

−1h14

(32)

and

E13 =
√

he14 +
√

1 + h2e2
14e13 = T 1/2e13 E34 =

√
he14 +

√
1 + h2e2

14e34 = T 1/2e34

E31 =
√

−he14 +
√

1 + h2e2
14e31 +

h

2

√
he14 +

√
1 + h2e2

14e34h14 = T −1/2

(
e31 +

h

2
e34h14

)

E43 =
√

−he14 +
√

1 + h2e2
14e43 − h

2

√
he14 +

√
1 + h2e2

14e13h14 = T −1/2

(
e43 − h

2
e13h14

)

H13 =
(

−he14 +
√

1 + h2e2
14

) (√
1 + h2e2

14h13 +
h

2
e14(h13 − h34)

)
= h13 − h

2
e14T

−1h14

H34 =
(

−he14 +
√

1 + h2e2
14

) (√
1 + h2e2

14h34 − h

2
e14(h13 − h34)

)
= h34 − h

2
e14T

−1h14.

(33)

The elements E23, E32 and H23 are obtained after analysing the commutators [E24, E43]
and [E34, E42]. It is simple to see that these elements remain undeformed, i.e.

E23 = e23 E32 = e32 H23 = h23. (34)

It is now easy to verify that

H23 + H34 = H24 [E12, E23] = E13 [E32, E21] = E31
(35)

H12 + H23 = H13 [E23, E34] = E24 [E43, E32] = E42.

Proposition 4. The generating elements H1 ≡ H12,H2 ≡ H23,H3 ≡ H34, E1 ≡ E12, E2 ≡
E23, E3 ≡ E34, F1 ≡ E21, F2 ≡ E32, F3 ≡ E43 of the Jordanian quantum algebra Uh(sl(4))
obey the following commutation rules:

T = (1 + 2h[E1, [E2, E3]])1/2 T −1 = (1 + 2h[E1, [E2, E3]])−1/2

[H1,H2] = [H1,H3] = [H2,H3] = 0

[H1, E1] = 2E1 [H1, E2] = −E2 [H1, E3] = 0

[H2, E1] = −E1 [H2, E2] = 2E2 [H2, E3] = −E3

6 Each subset forms a U(sl(3)) subalgebra in the U(sl(4)) algebra.
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[H3, E1] = 0 [H3, E2] = −E2 [H3, E3] = 2E3

[H1, F1] = −2F1 + T −1[F1, T ](H1 + H2 + H3) [H1, F2] = F2

[H1, F3] = T −1[F3, T ](H1 + H2 + H3)

[H2, F1] = F1 [H2, F2] = −2F2 [H2, F3] = F3

[H3, F1] = T −1[F1, T ](H1 + H2 + H3) [H3, F2] = F2
(36)

[H3, F3] = −2F3 + T −1[F3, T ](H1 + H2 + H3)[
T −1E1, F1

] = T −1H1 + 1
2 (T − T −1)(H1 + H2 + H3) [E2, F2] = H2[

T −1E3, F3
] = T −1H3 + 1

2 (T − T −1)(H1 + H2 + H3)[
T −1E1, F2

] = [
T −1E1, F3

] = 0 [E2, F1] = [E2, F3] = 0[
T −1E3, F1

] = [
T −1E3, F2

] = 0 [E1, E3] = [T F1, T F3] = 0

E2
1E2 − 2E1E2E1 + E2E

2
1 = 0 E1E

2
2 − 2E2E1E2 + E2

2E1 = 0

E2
2E3 − 2E2E3E2 + E3E

2
2 = 0 E2E

2
3 − 2E3E2E3 + E2

3E2 = 0

(T F1)
2F2 − 2T F1F2T F1 + F2(T F1)

2 = 0 T F1F
2
2 − 2F2T F1F2 + F 2

2 T F1 = 0

(T F3)
2F2 − 2T F3F2T F3 + F2(T F3)

2 = 0 F 2
2 T F3 − 2F2T F3F2 + T F3F

2
2 = 0

or, briefly,

[Hi,Hj ] = 0 [Hi,Ej ] = aijEj

[Hi, Fj ] = −aijFj + (δi1 + δi3)T
−1[Fj , T ](H1 + H2 + H3)[

T −(δi1+δi3)Ei, Fj

] = δij

(
T −(δi1+δi3)Hi +

(δi1 + δi3)

2
(T − T −1)(H1 + H2 + H3)

)
(37)

[Ei,Ej ] = [
T (δi1+δi3)Fi, T

(δj1+δj3)Fj

] = 0 |i − j | > 1

(adEi)
1−aij (Ej ) = 0 (i = j)(

adT (δi1+δi3)Fi

)1−aij (
T (δj1+δj3)Fj

) = 0 (i = j)

where (aij )i,j=1,2,3 is the Cartan matrix of sl(4).

Proposition 5. The non-cocommutative coproduct structure of Uh(sl(4)) reads

�(E1) = E1 ⊗ 1 + T ⊗ E1 �(E2) = E2 ⊗ 1 + 1 ⊗ E2

�(E3) = E3 ⊗ 1 + T ⊗ E3

�(F1) = F1 ⊗ 1 + T −1 ⊗ F1 + (H1 + H2 + H3)⊗ T −1[F1, T ]

�(F2) = F2 ⊗ 1 + T −1 ⊗ F2 (38)

�(F3) = F3 ⊗ 1 + T −1 ⊗ F3 + (H1 + H2 + H3)⊗ T −1[F3, T ]

�(H1) = H1 ⊗ 1 + 1 ⊗ H1 − 1
2 (1 − T −2)⊗ (H1 + H2 + H3)

�(H2) = H2 ⊗ 1 + 1 ⊗ H2

�(H3) = H3 ⊗ 1 + 1 ⊗ H3 − 1
2 (1 − T −2)⊗ (H1 + H2 + H3).

Paralleling the earlier cases, the universal Rh-matrix of the Uh(sl(4)) algebra is given by

Rh = exp(−hE14 ⊗ TH14) exp(hTH14 ⊗ E14) (39)

where

E14 = h−1 ln T = h−1arcsinh (he14). (40)
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4. Uh(sl(N )): generalization

The Uh(sl(5)) algebra is derived in a similar way: The elements E2, E3, F2, F3, H2, H3 are
not affected by the non-standard quantization. From the above studies, it is easy to see that

Proposition 6. The Chevalley generators (Ei, Fi ,Hi | i = (1, . . . , N − 1)) of the Jordanian
deformed Uh(sl(N)) algebra may be mapped on the classical sl(N) algebra as follows:

T = h[e1, [e2, . . . , [eN−2, eN−1] · · ·]] +
√

1 + h2([e1, [e2, . . . , [eN−2, eN−1] · · ·]])2

T −1 = −h[e1, [e2, . . . , [eN−2, eN−1] · · ·]] +
√

1 + h2([e1, [e2, . . . , [eN−2, eN−1] · · ·]])2

Ei = T (δi1+δi,N−1)/2ei (41)

Fi = T −(δi1+δi,N−1)/2

(
fi +

h

2
T [fi, [e1, [e2, . . . , [eN−2, eN−1] · · ·]]](h1 + · · · + hN−1)

)

Hi = hi − (δi1 + δi,N−1)h

2
[e1, [e2, . . . , [eN−2, eN−1] · · ·]]T −1(h1 + · · · + hN−1)

and they satisfy the commutation relations

[Hi,Hj ] = 0 [Hi,Ej ] = aijEj

[Hi, Fj ] = −aijFj + (δi1 + δi,N−1)T
−1[Fj , T ](H1 + · · · + HN−1)[

T −(δi1+δi,N−1)Ei, Fj

] = δij

(
T −(δi1+δi,N−1)Hi +

(δi1 + δi,N−1)

2
(T − T −1)(H1 + · · · + HN−1)

)
[Ei,Ej ] = 0 |i − j | > 1 (42)[
T (δi1+δi,N−1)Fi, T

(δj1+δj,N−1)Fj

] = 0 |i − j | > 1

(adEi)
1−aij (Ej ) = 0 (i = j)(

adT (δi1+δi,N−1)Fi

)1−aij (
T (δj1+δj,N−1)Fj

) = 0 (i = j)

where (aij )i,j=1,...,N is the Cartan matrix of sl(N), i.e. aii = 2, ai,i±1 = −1 and aij = 0 for
|i − j | > 1.

The algebra (42) is called the Jordanian quantum algebra Uh(sl(N)). Expressions (41)
may be regarded as a particular nonlinear realization of the Uh(sl(N)) generators. Other
nonlinear realizations of the Uh(sl(N)) algebra in terms of the classical sl(N) generators may
also be obtained.

Proposition 7. The Jordanian Uh(sl(N)) algebra (42) admits the following coalgebra
structure:

�(Ei) = Ei ⊗ 1 + T (δi1+δi,N−1) ⊗ Ei

�(Fi) = Fi ⊗ 1 + T −(δi1+δi,N−1) ⊗ Fi + T (H1 + · · · + HN−1)⊗ T −1[Fi, T ]

�(Hi) = Hi ⊗ 1 + 1 ⊗ Hi − (δi1 + δi,N−1)

2
(1 − T −2)⊗ (H1 + · · · + HN−1)

S(Ei) = −T −(δi1+δi,N−1)Ei (43)

S(Fi) = −T (δi1+δi,N−1)Fi + T 2(H1 + · · · + HN−1)T
−2[Fi, T ]

S(Hi) = −Hi +
(δi1 + δi,N−1)

2
(1 − T 2)(H1 + · · · + HN−1)

ε(Ei) = ε(Fi) = ε(Hi) = 0.

Following (20) and (39), we obtain the universal Rh-matrix of an arbitrary Uh(sl(N))

algebra in the following general form:

Rh = exp(−hE1N ⊗ TH1N) exp(hTH1N ⊗ E1N). (44)
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where

H1N = T (H1 + · · · + HN−1) E1N = h−1 ln T = h−1arcsinh (he1N). (45)

The above universal Rh-matrix of the full Uh(sl(N)) Hopf algebra is obtained from the
generators associated with the highest root; and its form coincides with the universalRh-matrix
of the Uh(sl(2)) Hopf subalgebra [25] associated with the highest root. It is interesting to note
that the nonlinear map (41) equips the h-deformed generators (Ei, Fi,Hi) with an additional
induced co-commutative coproduct. Similarly, the undeformed generators (ei, fi , hi), via the
inverse map, may be viewed as elements of the Uh(sl(N)) algebra; and, thus, may be endowed
with an induced non-cocommutative coproduct.

5. Conclusion

In general, a class of nonlinear invertible maps exists relating the Jordanian quantum algebras
and their classical analogues. Here we have used a particular map realizing Jordanian
Uh(sl(N)) algebra for an arbitrary N. As a result of our choice of the basis, via the map
described earlier, the algebraic commutation relations are deformed. One benefit of the method
is that the Ohn’s Uh(sl(2)) algebra is embedded as a Hopf subalgebra in our construction of
the Uh(sl(N)) Hopf structure. Another important advantage of our procedure is that our
expressions for the coalgebraic structure are considerably simpler than those found elsewhere
[8–11]. For our choice of the Hopf structure of the Uh(sl(N)) algebra, we obtain its universal
Rh-matrix expressed in terms of the generators corresponding to the highest root. The twist
operator corresponding to our map and relating the classical cocommutative with the Jordanian
non-cocommutativeHopf structures has been obtained as a series expansion in the deformation
parameter h.
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